PHYC 564, Laser Physics II

Homework \#5, Due April 19, 2021
Instructor: M. Sheik-Bahae, University of New Mexico
You are asked to perform a photo-luminescence experiment where a pump laser at wavelength λ_{p} is incident through a dichroic beam splitter and is focused onto the sample with a lens with known $\mathrm{f} \#(=\mathrm{f} / \mathrm{D})$. The luminescence (centered at $\lambda_{\mathrm{f}}>\lambda_{\mathrm{p}}$) is then collected with the same lens and is imaged into a detector or monochrometer for analysis. All lenses are AR coated.

a) Knowing the internal PL power P_{f}, calculate the collected (external) PL power $\left(\mathrm{P}_{\mathrm{ex}}\right)$ at the detector. Write $P_{e x}=\eta_{e} P_{f}$ and show that η_{e} (the extraction efficiency) can be approximated as

$$
\eta_{e} \approx \frac{1}{4 n(n+1)^{2}} \times \frac{1}{(f \#)^{2}},
$$

where n is refractive index of the sample. Hint: This is the fraction of solid angle (inside the sample) subtended by the lens after exiting. Ignore the reflection of the fluorescence from the bottom surface.
b) The detector system can be characterized by the following parameters: load resistance $\left(\mathrm{R}_{\mathrm{L}}\right)$, capacitance (C), quantum efficiency η_{q} and gain \bar{G}. The dominant noise is the Johnson noise of the load resistor at temperature T. Write the SNR of the system in terms of $P_{f}, \eta_{q}, \eta_{i}, \eta_{e}, R, C$, and other known parameters and constants.
c) Consider now that the sample under study is bulk GaAs at $\mathrm{T}=300 \mathrm{~K}\left(E_{g}=1.42 \mathrm{eV}\right.$, $\mathrm{n}=3.6$). Assume an internal luminescence power of $10 \mu \mathrm{~W}$. Assume the mean luminescence frequency is $v_{f} \approx v_{g}=E_{g} / \hbar$. The $f \#$ of the lens is 4.
i) What is the SNR if we use a regular photodiode (PD) $\eta_{\mathrm{q}}=1, \bar{G}=1$ terminating into an oscilloscope with $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}=5 \mathrm{pF}$ at $\mathrm{T}=300 \mathrm{~K}$?
ii) What is the SNR in (ii) if we replace the PD with an APD with $\bar{G}=100$ and excess noise factor of 10 ? What gain is necessary for making the detection shot-noise limited?

